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Spectral data can potentially offer a rapid assessment of nutrients in leaves and reveal information about 
the geologic history of the soil. This study evaluated the capability of the partial least squares regression 
(PLSR) for estimating foliar macro- and micronutrients (Ca, Mg, K, P, Mn, and Zn) using spectral data (400 to 
2,450 nm). First, filter-based wavelength selection was conducted to reduce the independent variables. PLSR 
performance was then assessed across 4 geologic materials (coarse glacial till, glaciofluvial, melt-out till, and 
outwash) and 4 dominant tree genera (Acer, Betula, Fagus, and Quercus) in the northeastern United States. 
The spectral ranges 400 to 500 nm and 1,800 to 2,450 nm were found to be the most important spectral 
regions for estimating foliar nutrient concentrations. The developed PLSR model predicted 6 foliar nutrients 
with moderate to high accuracy (adjusted R2 from 0.60 to 0.75). Foliar macronutrient concentrations 
were estimated with higher accuracy (mean adj. R2 = 0.69) than micronutrient concentrations (mean adj. 
R2 = 0.635). The prediction for the individual tree genera group and the individual geologic materials group 
outperformed the combined group; for instance, the adj. R2 for estimating Ca and P was 39% higher for 
American beech (Fagus grandifolia) than all tree genera combined. Spectral measurements combined with 
wavelength selection and PLSR models can potentially be used to quantify foliar macro- and micronutrients 
at regional scales, and taking into account geologic materials and tree genera will improve this prediction.

Introduction

Assessment of forest nutrients is an important task for deter-
mining forest health for agricultural productivity, timber and 
biofuel production, and ecosystem services such as habitat, pol-
lutant sequestration, and water resource protection [1,2]. These 
important services are under threat across the northeastern 
United States from several large-scale co-occurring phenomena, 
such as climate change and species loss from diseases, and other 
factors that have unclear impacts on the growth of native north-
ern hardwoods [3,4]. Traditional methods for assessing forest 
mineral nutrition of soil and leaf analyses to quantify nutrient 
uptake are costly and labor- and time-intensive [5,6], limiting 
our overall understanding of the spatial heterogeneity and pro-
cesses governing forest nutrition; therefore, we need new, effi-
cient tools that can be scaled up to entire forests.

Foliar nutrients have several major functions in plant metab-
olism in terms of establishing foliar structure, pigment synthesis, 
and metabolism as well as the electron transport chain, among 
others [7]. Various wavelengths of foliar spectral reflectance have 

been associated with foliar water content, pigment level, and 
nutrient concentration [8]. On this basis, spectral data in the 
form of hyperspectral reflectance provide an alternative source 
of information for monitoring plant leaf nutrients. Research that 
has focused on estimating nitrogen (N) content has significantly 
advanced model prediction accuracy and precision [9,10], but 
the evaluation of other nutrients and trace elements (e.g., Ca, 
Mg, P, K, Mn, and Zn) in plant leaves has been understudied 
and remains a challenge [11]. Estimating foliar nutrients using 
spectral reflectance is not a simple procedure due to difficulties in 
spectral autocorrelation and collinearity [12,13]. If the high dimen-
sionality of spectral data cannot be properly reduced, the spectral 
features exhibit significant collinearity and the developed method 
can easily be overfit during the calibration process [14]. Overfitting 
by spectral models results in poor performance when they are 
validated or upscaled using independent test datasets. Therefore, 
methods for wavelength selection and prediction are essential for 
accurate estimations of foliar nutrient concentrations [15,16].

Some studies have explored using spectral data to predict 
macro- and micronutrients in leaves. Methodologically, partial 
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least squares regression (PLSR) and machine learning have 
emerged as the dominant methods for predicting foliar nutri-
ents, with PLSR particularly noted for its ability to address 
overfitting issues and reduce spectral data’s dimensionality into 
fewer uncorrelated components. Lu et al. [17] highlighted the 
shortwave-infrared (SWIR) region’s (1,300 to 2,000 nm) 
effectiveness in predicting potassium (K) levels in rice leaves, 
establishing a significant correlation with leaf K content. 
Ramoelo et al. [18] combined spectral data with environmental 
variables using PLSR to estimate grass N and P concentrations, 
showcasing the method’s ability to integrate climatic, edaphic, 
and topographic data for nutrient prediction. In another study, 
Malmir et al. [19] successfully applied visible–near-infrared 
spectral data (400 to 1,000 nm) and PLSR to estimate foliar 
calcium (Ca), potassium (K), phosphorus (P), and nitrogen (N) 
in cacao trees, though the prediction for K was less precise. 
Furthermore, Osco et al. [20] evaluated macro- and micro-
nutrient content (N, P, K, Mg, S, Cu, Fe, Mn, and Zn) in 
Valencia Orange leaves using machine learning methods (e.g., 
Random Forest) combined with spectral data (380 to 1,020 nm). 
Gao et al. [21] applied hyperspectral remote sensing and a multi-
factorial approach, incorporating topography, soil, vegetation, 
and meteorology, with machine learning algorithms to estimate 
forage P in alpine grassland. The larger datasets typically 
required by machine learning pose a challenge for our dataset, 
which comprises only 189 foliar samples across 4 geological 
materials (coarse glacial till, glaciofluvial, melt-out till, and 
outwash) and 4 dominant tree genera (Acer, Betula, Fagus, and 
Quercus), along with a high dimensionality of input variables 
featuring 2,151 wavelengths ranging from 350 nm to 2,500 nm. 
In contrast, PLSR has been shown to overcome the overfitting 
problem and reduce the dimensionality of the spectral data by 
transforming the high dimensionality of spectral data to a 
smaller number of uncorrelated components [22,23]. It per-
forms well on relatively few samples with many predictor vari-
ables [24]. The PLSR method attempts to maximize covariance 
between the independent and dependent variables and keeps 
factors derived from the input spectral data orthogonal [13]. It 
is especially capable of handling highly correlated independent 
variables such as reflectance over a continuous spectrum 
[24,25]. Therefore, PLSR is the more suitable method due to 
the favorable conditions.

In this study, we assessed the relationship between foliar 
nutrients and spectral reflectance under potential genera-
specific effects and impacts of geologic materials in temperate 
forests across the New England region (northeastern) of the 
United States. The 48 sites studied were situated in a geographic 
grid that captured variations across geologic materials, and 
focused on the dominant tree genera that span the region: Acer 
(A. rubrum and A. saccharum), Betula (B. alleghaniensis, B. 
lenta, and B. papyrifera), Fagus grandifolia, and Quercus (Q. 
rubra and Q. alba). Thereafter, spectral data (visible, near-
infrared, and shortwave-infrared [VIS–NIR–SWIR], 400 to 
2,500 nm) from fresh foliage and foliar macro- and micronutri-
ent (Ca, Mg, K, P, Mn, Zn) concentrations were measured in 
the laboratory. Methods to predict foliar nutrient concentra-
tions based on foliar spectra were developed using wavelength 
selection and the PLSR model. We hypothesized that the PLSR 
model would capture generalized relationships between foliar 
nutrient concentrations and foliar spectra. Further, we expected 
that grouping by tree genera and geologic materials would 
improve model accuracy due to genera-specific physiological 

responses and mineral nutrition dependence on geologic mate-
rials underlying forest stands.

Materials and Methods

Study area
We studied 48 forested sites in a grid 180 km east–west by 
240 km north–south across New England, with ~30-km seg-
ments between each site (Fig. 1), which varied by 1 to 3 km 
to ensure (a) a northern hardwood forest was present, (b) the 
forest was on slopes < 10° and physically accessible (at least 
25 m away from any roads or human-made structures), and 
(c) the forest is at least moderately well-drained and shows 
no signs of seasonal flooding. Sites were moved if human 
disturbances were present or if they were >25% coniferous 
vegetation such as eastern hemlock (Tsuga canadensis) or 
white pine (Pinus strobus) to decrease conifer masking effects 
[26]. Geologic material at each site was identified using the 
USGS 1:5,000,000 Surficial Geology Map [27] and further 
confirmed through soil analyses (texture and rock fragments). 
Predominant parent geologic settings were coarse glacial till 
(primarily subglacial lodgement materials), melt-out till (pri-
marily supraglacial materials), glaciofluvial deposits (from 
postglacial rivers and lakes), and outwash (plains and fans).

Foliar sampling and chemical analysis
Mature trees, exhibiting no evidence of defoliation or disease 
and ranging from 15 to 25 cm DBH (diameter at breast height), 
were sampled at mid-canopy in late June and early July of 2019 
across 48 sites within a 14-day timeframe. Foliage was collected 
from branches of 3 to 5 dominant trees, situated 4 to 25 m above 
the ground, using either a stainless-steel pole saw or an arborist 
throw-ball. In the throw-ball technique, a 0.4-kg throw-ball 
was lobbed over the upper canopy branches, and the branches 
were forcibly removed at their connection to the main trunk 
[28]. For shorter trees, a branch was collected from the main 
trunk using an extendible stainless steel pole saw. Foliage sam-
ples were collected from American beech (Fagus grandifolia), 
black birch (Betula lenta), red maple (Acer rubrum), white oak 
(Quercus alba), red oak (Quercus rubra), white birch (Betula 
papyrifera), and white ash (Fraxinus americana) in each forest 
stand and transported on ice in a cooler to the laboratory for 
spectral analysis within 5 h of collection. Overall, we collected 
189 samples from 48 distinct sites. For each individual tree 
sampled, we ensured the collection of 2 to 3 replicate samples to 
bolster the reliability of our data. Specifically, we sampled 70 leaf 
samples for Acer, 23 for Betula, 27 for Fagus, 29 for Quercus, and 
40 for other mixed species. The distribution of tree samples 
across different geological materials and genera is presented in 
Table 1.

Oven-dried foliage samples were digested to determine macro- 
and micronutrient concentrations using a modified EPA 3050B 
method [29], in which samples were combusted prior to strong 
acid digestion. To begin the process, plant material was dried to 
a constant mass at 45 °C in closed paper bags in a greenhouse. 
Mid-veins were removed, and the leaf blades were shredded and 
ground. A subsample of the ground material was transferred to 
an acid-washed ceramic vessel and combusted at 550 °C for 8 h. 
The ashes were transferred to 50-ml centrifuge tubes and digested 
with 5 ml of reverse aqua regia (9:1 HNO3:HCl) and lightly capped 
to degas. The digest was diluted to 50 g using deionized water. 
Samples were further treated by diluting 3 g of the plant tissue 
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digest to 15 g using 2.5% w/v HNO3 solution for analysis. Plant 
leaf digests were diluted with deionized water and analyzed for 
macro- (Ca, K, Mg, and P) and micronutrients (Mn and Zn) with 
an Agilent 5110 Inductively Coupled Plasma Optical Emission 
Spectrometer (Agilent Technology, Santa Clara, CA, USA).

Spectral measurement
The foliar reflectance spectra at 350 to 2,500 nm were measured 
using a spectroradiometer, the ASD FieldSpec 3 full range [30]. 
Our ASD has a spectral resolution of 3 nm for VNIR. The leaves 
were collected in the field and transported to a dark lab to 
measure their spectra. The lamp is the light source for the mea-
surement in the laboratory. Its brand is ProLamp and it was 
purchased as an ASD’s standard accessory. The light intensity 
is 14.5 V/50 W. It is a full spectral lamp (not mono-color or 

LED). Spectral reflectance of freshly collected leaves was mea-
sured within 5 h of field sampling. A full-spectrum ASD Pro 
Lamp was mounted on a tripod and pointed at the leaves in a 
darkened lab. A Spectralon white reference panel with nearly 
100% reflectance was used to calibrate illumination. Both 
the leaves and white reference panel were positioned with a 
fixed geometry to the optical fiber cable tip and the lamp. The 
fiberoptic cable has a field of view of 25°. The laboratory mea-
surement was set up with an incidence angle of 18.5° to avoid 
the shadow. The distance of fore optic to the leaves or white 
reference was 8 cm. The footprint has a diameter of 3.5 cm. The 
ASD recorded an average of 10 scans per spectrum. The integra-
tion time for ASD scanning was 17 ms. The dark current was 
automatically subtracted in RS3 software in the reflectance 
mode after the optimization. We also recorded 3 spectra for 

Fig. 1. Location of sampling sites and geologic surficial materials.
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each foliage sample. The spectral curves showed a small fluctua-
tion at 2 ends of the spectrum due to the low light intensity of 
the lamp. To eliminate the fluctuations, the 2 ends of the raw 
spectra were trimmed, and reference spectra between 400 and 
2,450 nm were used for this study (Fig. 2A and B). The spectral 
curve was first transformed to first derivative, which enhances 
the detectability of absorption features that may not be accu-
rately captured or even detected in spectral curves [20,31–33]. 
The advantage of derivative transformation over the spectral 
curve lies in its ability to eliminate background interferences, 
separate overlapping spectra, and minimize baseline drift in 
raw spectra [34]. Studies focusing on the application of deriva-
tive analysis to plant reflectance curves have identified strong 
correlations with nitrogen (N) [31,32] and cadmium (Cd) con-
centrations [33]. These findings indicate that derivative analysis 
effectively highlights components that are typically challenging 
to detect, demonstrating its utility in spectral analysis. Therefore, 
we used the first derivative of the reflectance (Fig. 2C and D) 
to build the PLSR model in this study.

Partial least squares regression
The PLSR model (Fig. 3) includes an x model and a y model 
and is generally described in the following form with equivalent 
matrix notations in parentheses:

where xik is the spectral data matrix for foliar samples, i is the 
number of foliar samples, k is the number of spectral wave-
lengths from 400 to 2,450 nm, and a is the number of compo-
nents. In this study, i and k are 189 and 2,051, respectively. pak 
is the loading matrix, and eik are the X-residuals. yim is the nutri-
ent data matrix for foliar samples, uia is the Y-scores, cam is mass, 
gim are the residuals, and m is the number of nutrients to be 
modeled. We fit a PLSR for each individual nutrient; thus, m is 
equal to 1 in this study.

PLSR attempts to find a few “new” uncorrelated PLS com-
ponents (also known as latent variables) to overcome overfitting 
[13]. These “new” spectral variables are also called X-scores 
and the linear combinations of the response variables are called 
Y-scores. The formulas for X-scores and Y-scores are shown 
below in both element and matrix form:

where w∗
ka

 and c∗ma are masses. Since X-scores are good predic-
tors of Y [13], the foliar nutrients can be estimated as:

where fim comprise the Y-residuals, the deviations between the 
observed and modeled responses. Equations 3 and 5 are merged 
to obtain a multiple regression model:

where bmk comprise the PLS-regression coefficients (β) and can 
be written as:

A high absolute value of the regression coefficient bkm indi-
cates that the specific wavelength has a high correlation with 
the foliar nutrient concentration. The PLSR model aims to 
maximize the covariance between T and U. The PLSR analysis 
and evaluation were coded using Python. Specifically, we used 
the PLSRegression class from the sklearn.cross_decomposition 
module, part of the scikit-learn library [35], version 0.24.2. The 
algorithm development and data analysis were conducted using 
Jupyter Notebook and PyCharm as integrated development 
environments (IDEs).

Wavelength selection and PLSR predictive model
PLSR is a suitable method to overcome the overfitting problem 
and to reduce the dimensionality of the spectral data. However, 
very high dimensions and small sample size can still alter the 
PLSR results, and a large number of irrelevant variables may 
yield large variations on the prediction based on the test set (1)xik=

∑

a
tiapak+eik

(

X =TP� +E
)

(2)yim=
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,
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∑
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∑

a
c∗am+ fim=

∑

k
xikbkm+ fim

(
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)

,

(7)bkm=
∑

a
w∗
ka
c∗am;

(

B=W∗C�
)

Table  1. The distribution of tree samples across different geo-
logical materials and genera

Geological material Genus Number of trees

Coarse glacial till Acer 36

Coarse glacial till Betula 16

Coarse glacial till Fagus 15

Coarse glacial till Quercus 7

Coarse glacial till Others 20

Glaciofluvial Acer 18

Glaciofluvial Betula 4

Glaciofluvial Fagus 5

Glaciofluvial Quercus 9

Glaciofluvial Others 8

Melt-out till Acer 12

Melt-out till Betula 3

Melt-out till Fagus 6

Melt-out till Quercus 8

Melt-out till Others 10

Outwash Acer 4

Outwash Betula 0

Outwash Fagus 1

Outwash Quercus 5

Outwash Others 2
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Fig. 2. Spectral reflectance curves. Mean (±SD) spectral reflectance for (A) tree genera and (B) geologic materials. First derivative of the reflectance for (C) tree genera and 
(D) geologic materials.

Fig. 3. Diagram of the PLSR model.
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[36]. Therefore, a PLS-based filter method was used to select 
significant wavelengths to improve the estimation [36]. The 
filter-based methods select wavelengths in 2 steps. First, the 
PLSR model was fitted to the spectral and foliar nutrient data. 
Then, regression coefficients (β), a single measure of association 
between each wavelength and the foliar nutrient concentration, 
are used to select wavelengths. The wavelength with the lowest 
correlation was discarded according to the regression coefficients 
(β). The above 2 procedures were iterated until the root mean 
square error (RMSE, Eq. 10) decreases. Finally, the remaining 
wavelengths were used to establish a new PLSR between spectral 
and foliar nutrient data. For the new PLSR model, the optimized 
PLS components with the lowest RMSE were selected by search-
ing from PLS components, with the number of components 
capped at 30 since we observed the decrease of RMSE becom-
ing insignificant between 7 and 24 components for individual 
nutrients.

Method evaluation metrics
The coefficient of determination (R2; Eq. 8), adjusted R2 (R2

Adj.
, 

Eq. 9), and RMSE (Eq. 10) were used to evaluate the accuracy 
of predicted foliar nutrient concentrations. Residual prediction 
deviation (RPD) [37] was then used to further evaluate the reli-
ability of the predictions (Eq. 11). The prediction ability of the 
model was considered to be good when RPD values were greater 
than 1.4 and to be excellent when RPD values were greater than 
2 [38]. Generally, larger values of R2 and RPD and a smaller 
value of RMSE indicate a method with good predictability.

where ŷi is the predicted value, yi is the measured value, y is 
the mean of the measured values, n is the number of samples, 
and p is the number of independent variables. The metrics were 
calculated using a 10-fold cross-validation procedure for each 
PLSR model.

Results and Discussion

Foliar nutrient variations across tree genera and 
geologic materials
Foliar nutrient concentrations by geologic material and plant 
genera are shown in Fig. 4. Foliar nutrient concentrations were 

comparable with previous studies in the region [26,28,39]. 
Among geologic materials, foliar Ca, Mg, P, K, and Zn nutrient 
concentrations were highest on coarse glacial till and glacioflu-
vial materials. Higher foliar nutrient concentrations are most 
certainly due to the abundance of less weathered, nutrient-
bearing minerals in glacial till compared to highly weathered 
minerals present in glaciofluvial soil parent material [28,40]. 
Comparing among tree genera, foliar Ca, Mg, K, and Zn nutri-
ent concentrations were higher for Betula but similar for Acer, 
Fagus, and Quercus, despite co-occurring among the same sur-
ficial deposits. These results suggest that foliar response to soil 
nutrient uptake rates were genera-dependent, with Betula indi-
viduals being high accumulators and potentially less sensitive 
to differences in nutrient availability across soil and surficial 
geological materials. The bioaccumulation of elements by Betula 
has been reported in several previous studies, whereas other 
tree species such as Fagus tend to have lower elemental concen-
trations [26,41].

The descriptive statistics of 6 nutrient concentrations are 
presented in Table 2. The mean concentrations reveal that Ca 
has the highest average level among the nutrients studied, with 
a mean of 7,066 mg/kg, indicating its abundant presence in the 
foliar samples. Mg and P also show significant mean concentra-
tions of 2,295 mg/kg and 1,836 mg/kg, respectively, while K 
has a lower mean value of 804 mg/kg. The variability in nutrient 
concentrations is captured by the standard deviation, with Ca 
showing the highest variation (4,434 mg/kg) among the mac-
ronutrients, which suggests a wide range of Ca levels across the 
samples. Similarly, Mn exhibits considerable variability among 
the micronutrients, with a standard deviation nearly equal to 
its mean (748 mg/kg), pointing to diverse Mn concentrations 
within the foliar samples. These descriptive statistics under-
score the diverse nutrient profiles within the foliar samples, 
reflecting the complex interplay of environmental, genetic, and 
soil factors influencing nutrient uptake and distribution.

Significant wavelengths for predicting foliar nutrient 
concentrations
Spectral reflectance, selected wavelengths, and PLS coefficients 
associated with the PLSR model for predicting 6 different foliar 
nutrients are shown in Fig. 5. The high absolute value of a PLS 
coefficient indicates a significant wavelength. Overall, the selected 
significant wavelengths were similar among 6 foliar nutrients, 
which focused on 400 to 500 nm, around 1,000 nm, and 1,800 
to 2,450 nm. These results are partly in line with previous findings 
that the green region around 470 to 520 nm is important for 
predicting Ca concentrations [19], and agree with the physiologi-
cal function of Ca promoting greater chlorophyll or chloroplasts 
[42,43], likely through indirect enhancement via photoprotection 
and regulating photosynthetic electron transfers [44]. The higher 
abundance of Ca allows for greater green pigmentation for 
photosystem II. Although the selected wavelengths shift slightly 
between different foliar nutrients, most of the important wave-
lengths remained at a similar region, suggesting that these 
wavelengths are important for estimating the concentrations 
of important foliar nutrients. For Mg and Zn, the red edge 
(~710 nm) is also important, unlike for the other 4 foliar nutri-
ents, which agrees with the finding that greater Mg is associated 
with higher anthocyanin levels [45], seen as greater red pigmenta-
tion in leaves.

The value of the coefficient (negative or positive) indicates 
the importance of the wavelength in terms of explaining the 

(8)R2 = 1 −

∑n
i=1

�

yi− ŷi
�2

∑n
i=1

�

yi−y
�2

(9)R2
Adj.

= 1 −
n − 1

n − p − 1

(

1 − R2
)

(10)
RMSE=

�

∑n
i=1

�

yi− ŷi
�2

n

(11)
RPD =

�

∑n
i=1 (yi−y)

2

n

RMSE
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variance of foliar nutrient concentrations [46,47]. Among the 
significant wavelength regions mentioned above, the PLS coef-
ficients for 6 foliar nutrients are particularly high at 400 to 500 nm 
and 2,200 to 2,400 nm. These 2 spectral regions were the 
most important wavelengths for the retrieval of different foliar 
nutrients. The high correlation in the 2,200 to 2,400 nm region 
could be attributed to the SWIR region’s ability to penetrate 
deeper into leaf tissues compared to other spectral regions. This 
penetration allows for the detection of specific chemical bonds 
associated with foliar nutrients. For instance, absorption fea-
tures in this region are often related to water content, cellulose, 
lignin, and other biochemical components [48–50], which can 
indirectly correlate with nutrient levels due to their influence 
on plant physiological status and health.

PLSR estimates for 6 plant nutrients
The PLSR estimates were validated using measured concentra-
tions for 6 foliar nutrients (Fig. 6), and the descriptive regression 
statistics are presented in Table 3. Overall, the PLSR algorithms 
predict foliar nutrient concentrations with moderate to high 
accuracy (adj. R2 from 0.60 to 0.75). Among all macronutrients 
studied, Ca was the most accurately estimated by PLSR through 
cross-validation (adj. R2 = 0.75). We attribute 2 potential mecha-
nisms to the accuracy of the PLSR model for estimating foliar 
Ca concentrations. First, Ca is commonly a limiting nutrient in 
temperate forests of New England, and Ca deficiencies may be 
more pronounced than other macronutrients due to historical 
losses from acid rain. Second, Ca is a complex macronutrient 
due to its many roles in structures, chemical signaling, and as 
an enzyme cofactor [51] and thus may express many controls 
on plant health via pigmented compounds such as chlorophylls 
or anthocyanins [52]. Similar modes of actions are hypothesized 
for K and Mg, with a clear linkage between Mg availability and 
chlorophyll a and b in foliage. Both micronutrients, Mn and Zn, 
had lower accuracy (adj. R2 = 0.60 for Mn; adj. R2 = 0.61 for Zn) 
compared to the 4 macronutrients for predicting foliar concen-
trations. We hypothesize that direct linkage between foliar Mn 
and Zn concentrations with spectra reflectance could be gov-
erned by 3 mechanisms. First, Mn and Zn are required as 
enzyme cofactors and their deficiencies could generate subtle 
changes to leaf pigments. Second, high Mn and Zn could nega-
tively impact leaf nutrition [53,54], decreasing the health of the 
foliage. Lastly, Mn and Zn concentrations may not directly affect 
leaf pigment compounds and rather simply coincide with lower 
Ca or Mg concentrations. Our results demonstrate that macro-
nutrients and micronutrients are quantifiable from spectral 

Fig. 4. Foliar nutrient concentrations by geologic material and tree genus. Macronutrient concentrations (Ca, K, Mg, and P) across (A) geologic materials and (B) tree genera. 
Micronutrient concentrations (Mn and Zn) across (C) geologic materials and (D) tree genera. The whiskers show 5th and 95th percentile.

Table  2. Descriptive statistics for 6 foliar nutrient concentra-
tions

Sum-
mary

Macronutrients (mg/kg)
Micronutrients 

(mg/kg)

Mg P Ca K Mn Zn

Mean 2,295 1,836 7,066 804 748 58

SD 1,182 698 4,434 743 745 90

Min 390 762 1,591 9.4 19.7 6.4

Max 9,747 5,159 25,260 3,617 5,860 588
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Fig. 5. Spectral reflectance (blue line), selected wavelengths (orange line), and PLS coefficients (orange points) associated with the PLSR method for predicting 6 different 
foliar nutrients. Only the top 60 significant wavelengths are shown for easier visualization. (A) Mg, (B) Ca, (C) P, (D) K, (E) Mn, and (F) Zn. The gray lines represent gridlines 
that correspond with the tick marks on the left Y-axis or right Y-axis.
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reflectance and PLSR model, with better prediction for macro-
nutrients than micronutrients. Macronutrients like Ca and K 
are present in higher concentrations in foliar and are involved 
in major structural components and physiological processes. 
This higher concentration may result in more pronounced spec-
tral signatures that can be more easily detected and quantified 

through spectral reflectance. On the other hand, micronutrients 
like Mn and Zn are required in much smaller amounts and may 
not significantly alter the spectral reflectance to the same extent, 
making their detection and quantification more challenging.

The number of significant wavelengths in estimating 6 
foliar nutrient concentrations ranged between 405 and 576. 

Fig. 6. PLSR prediction for foliar (A) Mg, (B) Ca, (C) P, (D) K, (E) Mn, and (F) Zn.
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The resulting PLSR models contain 7 to 24 PLS components 
(Table 3). For all macronutrients, more than 450 significant 
wavelengths were selected at the wavelength selection step, 
and more than 10 uncorrelated PLS components were used 
by the final PLSR model. In contrast, micronutrients have 
fewer significant wavelengths and PLS components, and their 
concentrations appear to have a weaker relationship with 
spectral reflectance than those of the macronutrients. These 
results confirm again that spectral reflectance and the PLSR 
model more accurately predict macronutrient than micronu-
trient concentrations.

PLSR model results across geologic materials
Successful PLSR models were developed for each of the 4 geo-
logic materials for Ca and P. For each group, the predicted foliar 
Ca and P concentrations were validated using measured con-
centrations shown in Fig. 7, and the descriptive regression sta-
tistics are presented in Table 4. The PLSRs fitted for the different 
geologic materials significantly improved foliar P prediction 
while maintaining similar accuracy for Ca. The PLSRs for indi-
vidual geologic materials for foliar P showed a higher level of 
accuracy (average adj. R2 = 0.86) compared to the combined 
group (adj. R2 = 0.66). This increase in model prediction accu-
racy suggests that geologic material is an important factor affect-
ing foliar P. In contrast, PLSR models for geologic materials for 
predicting foliar Ca concentrations (average adj. R2 = 0.78) did 
not significantly improve over the combined group (adj. R2 = 
0.75). Geologic materials did not exhibit a strong influence on 
foliar Ca, unlike the case for foliar P. Among the 4 geologic 
materials, outwash yielded the highest predictive accuracy for 
both foliar Ca and P concentrations. Foliar Ca concentration 
predictions for glaciofluvial materials were hampered by outliers 
with a high concentration. The number of selected wavelengths 
used to estimate foliar Ca and P concentrations among geologic 
materials ranged between 121 and 345, and the number of PLS 
components ranged between 2 and 6 (Table 4), which is rela-
tively lower likely due to the smaller sample size.

There are several possible explanations for geologic materials 
affecting nutrients and nutrient quantification using PLSR. First, 
geologic materials control the sourcing of nutrients to the soils 
and trees, and less chemically weathered geologic materials, such 
as glacial till, can supply more nutrients to trees than extensively 
chemically weathered geologic materials such as glaciofluvial 
deposits. Second, the physical nature of the geologic material 
can improve or diminish tree growth by affecting water move-
ment and storage. Coarse particles of glacial till hold less water 

and have higher infiltration rates than the finer particles of gla-
ciofluvial deposits [28]. Both of these influences of geologic 
materials on tree growth and nutrition across glacial till and 
glaciofluvial geologic materials were reported previously for the 
region [28]. Lastly, the improved PLSR relationship between 
nutrients from geologic materials and foliar nutrient concentra-
tions may be attributed to reducing the across-group variability 
among the data.

PLSR model results across tree genera
As done for the geologic materials, PLSR models were developed 
for foliar Ca and P concentrations for each tree genus (Fig. 8), 
and the descriptive regression statistics are presented in Table 
5. Predictions for the tree genera groups also improved the 
model accuracy over the combined model and even slightly bet-
ter than geologic materials. This result implies that the tree genus 

Table 3. PLSR model results for 6 foliar nutrients

Nutrient R2 R2
Adj. RMSE RPD No. of wavelengths No. of PLS components

Mg 0.67 0.64 696.19 1.69 474 17

P 0.69 0.66 389.02 1.79 576 16

Ca 0.76 0.75 2,192.81 2.02 543 10

K 0.75 0.71 296.04 1.99 576 24

Mn 0.62 0.60 461.82 1.61 405 9

Zn 0.62 0.61 53.20 1.62 436 7

Table 4. PLSR model results for Ca and P by groups of geologic 
materials

Coarse 
glacial 

till
Glacioflu-

vial
Melt-out 

till
Out-
wash

R2 Ca 0.77 0.67 0.82 0.98

P 0.80 0.89 0.90 0.91

R2
Adj.

Ca 0.76 0.65 0.79 0.93

P 0.79 0.86 0.88 0.89

RMSE Ca 2,350.72 2,689.30 1,320.31 692.62

P 345.62 249.37 207.06 64.18

RPD Ca 2.06 1.71 2.32 3.11

P 2.22 2.62 2.79 3.28

No. of 
wave-
lengths

Ca 316 328 135 112

P 326 345 218 121

No. of 
PLS com-
ponents

Ca 5 3 6 3

P 6 5 4 2

No. of 
samples

Ca 94 44 39 12

P 94 44 39 12
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Fig. 7. PLSR model results for Ca and P by the categories of geologic material. (A) Coarse glacial till for Ca, (B) coarse glacial till for P, (C) glaciofluvial for Ca, (D) glaciofluvial 
for P, (E) melt-out till for Ca, (F) melt-out till for P, (G) outwash for Ca, and (H) outwash for P.
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Fig. 8. PLSR model results for Ca and P by groups of tree genus (A) Acer for Ca, (B) Acer for P, (C) Betula for Ca, (D) Betula for P, (E) Fagus for Ca, (F) Fagus for P, (G) Quercus 
for Ca, and (H) Quercus for P.
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is a more important factor affecting foliar macronutrients than 
geologic material. The individual tree genus models for foliar P 
showed a much higher level of accuracy (average adj. R2 = 0.87) 
compared to the combined group (adj. R2 = 0.66). The individual 
genus models for Ca also improved over the combined group 
from average adj. R2 0.75 to 0.83. For PLSR foliar Ca models, 
Fagus and Quercus had higher accuracy (adj. R2 = 0.93 for Fagus; 
adj. R2 = 0.91 for Quercus) compared to Acer and Betula (adj. 
R2 = 0.76 for Acer; adj. R2 = 0.71 for Betula). For PLSR foliar P 
models, all individual genus predictions had similar accuracy. 
The number of selected wavelengths used to estimate Ca and P 
concentrations across tree genera ranged between 117 and 436 
and the number of PLS components ranged between 6 and 26 
(Table 5), which are relatively higher than separating by geologic 
materials (number of selected wavelengths: 121 to 345, PLS 
components: 2 to 6). These results suggest that tree genus is the 
more important factor affecting foliar nutrients than geologic 
material because more significant wavelengths correlated with 
foliar nutrient had been selected and more uncorrelated PLS 
components could be used by the PLSR model.

There are several possible explanations for genus-specifc 
models improving the accuracy of quantifying nutrients by 
PLSR. First, the control of nutrient acquisition and transport 
from roots to leaves are often specific to a genus, species, or 
variety and are physiologically and genetically controlled. The 
effects of absolute and relative variability in leaf pigment com-
pounds are also diminished when each genus is analyzed sepa-
rately, which follows other methods of forest mensuration, e.g., 
aboveground biomass estimation by allometric equations [55]. 
As shown in previous studies, trees in different genera acquire 
different nutrient concentrations, despite similar nutrients within 
the geologic materials present, with nutrient concentrations 
higher in Acer and Betula and lower in Fagus [26,56]. Second, 
nutrient-poor soils may limit the establishment of nutrient- 

dependent trees such as Acer [57] and promote trees adapted to 
nutrient-poor soils such as F. grandifolia [56], which can dimin-
ish the variability of observable nutrient concentrations. Various 
drivers can affect the relationship between foliar nutrients and 
leaf reflectance. For example, the characteristics of the leaf sur-
face, as well as the leaf ’s internal structure, vary across different 
genera. Leaf surface features such as waxes and hairs signifi-
cantly influence reflectance by altering the leaf ’s optical proper-
ties [58]. Similarly, cell wall molecules like cellulose and lignin 
affect the absorption of SWIR radiation, which is crucial for 
determining leaf properties [49,50]. Consequently, these varia-
tions may cause discrepancies in reflectance measurements, 
which, in turn, impacts the accuracy of nutrient predictions 
across genera.

There are a few limitations to our current study that should 
be noted. Our region is geographically focused only on southern 
New England, utilizing common tree genera, and mid-growing 
season leaves. Future studies will need to consider differences 
throughout the growing season, link spectra with physiological 
and biochemical changes, and leverage species-specific differ-
ences to determine which are more reliable indicators of soil 
deficiencies. This study focused on predicting foliar nutrient 
concentrations based on spectral reflectance at the leaf level 
measured in the laboratory. The research design was crafted to 
identify the spectral characteristics of nutrients while minimiz-
ing other potential interference that could be introduced. When 
upscaling these results to the canopy scale, the model requires 
further development, considering factors such as leaf density, 
leaf structure and light propagation within the canopy.

Conclusion

The developed PLSR model predicted plant nutrients with mod-
erate to strong accuracy for macro- and micronutrients in tem-
perate hardwood forests of New England. This method holds 
promise for its expanded use in adjacent and other forested 
regions and can decrease the costs to estimate nutrients across 
larger areas. Foliar macronutrient concentrations were more 
accurately estimated compared to micronutrient concentrations, 
most likely due to their greater importance for tree mineral nutri-
tion and health. The relationship between foliar nutrients and 
foliar spectra varied over the geologic materials and tree genera 
and decreases the strength of the connection between foliar spec-
tra and foliar nutrients. Geologic materials are not commonly 
used in assessments of foliar nutritional status, and our results 
suggest that it can be an important factor to consider. However, 
separating trees by genus proved to be more significant for model 
accuracy and thus will require large spectral assessments for each 
genus. Spectral measurements combined with wavelength selec-
tion and PLSR models can be used to quantify foliar macro- and 
micronutrients at regional scales and can be further improved 
by incorporating geologic materials and tree genera.
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