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Synonyms

Earth’s critical zone

Definition

The critical zone, the near-surface terrestrial environment
from the bottom of circulating groundwater to the top of
vegetation, hosts the complex interactions involving rock,
soil, water, air, and living organisms that regulate life-
sustaining resources.

Introduction

The term “critical zone” was first applied to the surface
terrestrial environment by Dr. Gail Ashley (1998) in a pre-
sentation at the Geological Society of America. In her work,
Dr. Ashley introduced the concept of the critical zone when
she wrote that a “holistic approach is needed to understand the
three-dimensional complex linkages involving physical,
chemical, and biological processes” and a study of geologic
and surface processes that are “crucial for life” (Ashley 1998).
In 2001, the United States National Research Council’s Com-
mittee on Basic Research Opportunities in the Earth Sciences
noted the future importance of the critical zone concept
as integrative of disciplines and required to address
interconnected problems (NRC 2001). The National Research
Council defined the critical zone as “the heterogeneous, near
surface environment in which complex interactions involving

rock, soil, water, air and living organisms regulate the natural
habitat and determine availability of life sustaining
resources.” Brantley et al. (2007) provided an alternative
definition of the critical zone as “the fragile skin of the planet
defined from the outer extent of vegetation down to the lower
limits of groundwater,” and many others have followed. In all
definitions, the critical zone is recognized as a location of
complex biogeochemical and physical processes that sup-
ports the terrestrial biosphere (Fig. 1) (White and Sharkey
2016). Study of the structure and function of the critical zone
explicitly includes study of processes evolving at all time-
scales from that of the geologist to that of the meteorologist,
and explicitly includes atmospheric (i.e., climate), geologic
(e.g., volcanic, tectonic), and biologic (e.g., microbes, plants,
organisms, humans) changes throughout Earth’s deep and
recent history (NRC 2001). Critical zone science can provide
information for sustainable adaptation to human perturbations
(e.g., intensive land use and climate change).

Essential Concepts

The critical zone paradigm is a new integration of existing
fields of natural sciences (Fig. 1). One of the essential aspects
of this paradigm is that the term “critical” reflects that nearly
all terrestrial life, including humans, depends on the critical
zone (Giardino and Houser 2015; NRC 2001), establishing a
clear link between Earth’s surface processes and geosystems
with humans (Brantley et al. 2007; Richter and Billings
2015). Land use and climatic impacts are affecting processes
that govern biomass productivity, soil formation, geochemi-
cal cycling of elements, and water resources (Hooke et al.
2012). For this reason, it is essential for developing predictive
abilities of how attributes, processes, and outputs of the
critical zone will respond to projected climate and land-use
changes. Some of the central scientific concepts that have
been investigated through critical zone science are: (1) forma-
tion and distribution of weathered bedrock, (2) sustainability
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of water and soil resources, (3) tracing the movement of
energy and reactive material, and (4) integration of processes
across spatial and time scales and with respect to anthropo-
genic uses and perturbations.

Understanding the biological, chemical, and physical
properties controlling bedrock and surficial deposit
weathering is a central topic for critical zone science and for
parallel efforts in geobiology and geochemistry (Pope 2015).
The formation of weathered bedrock has been investigated by
Earth scientists for more than 170 years (see Ebelmen 1845;
Gilbert 1909). Critical zone science has generated renewed
interest in the distribution, structure, and residence of weath-
ered rock, features whose spatial distribution are generally
considered to be difficult to measure (Holbrook et al. 2014).
The architecture of the weathered bedrock of the critical zone
has been shown to be a combination of tectonic, topographic,
and weathering processes combined (e.g., Brantley and
Lebedeva 2011; St. Clair et al. 2015). Weathering of bedrock
may influence sustainability issues, in particular, the feedback
between weathering rates and atmospheric CO2 concentra-
tions (Raymo 1989). Bedrock composition can also directly
control the aboveground ecosystem. Hahm et al. (2014) found
differences in forest productivity were directly linked to major
and minor element composition of the underlying bedrock.
The architecture and distribution of fractures is not only
important for element cycling, but is also key for reservoirs
of materials and energy in the critical zone. For example, the

thickness and structure of the weathered bedrock in the crit-
ical zone controls many hydrologic properties such as water
table elevation, plant-available water, and discharge rates to
streams and rivers (Brooks et al. 2015).

Soil and water sustainability is a fundamental component
of critical zone science. Much of the framework of critical
zone science is built upon principal themes of soil science
(e.g., state factor model of Hans Jenny 1941) and hydrology
(e.g., subsurface and surface flow by Freeze 1972). Critical
zone science focuses on soil sustainability through estimating
soil formation rates (e.g., soil formation on a hillslope by
Riggins et al. 2011), modeling nutrient cycling (e.g., soil-
vegetation cycling rates in a temperate forest by Kraepiel
et al. 2015), and quantifying erosion and denudation rates
(e.g., sediment transport from following a storm by Foster and
Anderson 2016). In addition, water sustainability is consid-
ered through snowpack (e.g., snow accumulation in the south-
ern Sierra Nevada by Kirchner et al. 2014), belowground
water storage (e.g., water table recharge along a hillslope by
Dralle et al. 2014), surface and subsurface flow (e.g., depth of
preferential flow rates through soils by Thomas et al. 2013),
plant-availability (e.g., plant ecohydrological strategies in
seasonally dry ecosystems by Vico et al. 2015), and evapo-
transpiration losses (e.g., evapotranspiration along an eleva-
tion gradient in southern Sierra Nevada mountains by
Goulden et al. 2012). While many of these efforts run parallel
with traditional soil and hydrological sciences, their integra-
tion with other disciplines for broader theoretical understand-
ing and quantitative modeling is pivotal for critical zone
science. For an example of greater integration, Bales et al.
(2011) observed that during severe droughts in the Sierra
Nevada Mountains, California, the majority of water lost
from soils and trees can be sourced from water stored in
weathered bedrock. In addition, Wilson et al. (2016) linked
tillage practices in agroecosystems with soil erosion, which
influences crop productivity, carbon storage, and net income
from a parcel of land. Critical zone science has built upon
existing soil and water sustainability concepts with greater
integration as a holistic system (Richter and Billings 2015).

Tracing the movement of material and energy is important
for quantifying and modeling local and global critical zone
processes, particularly those that are reactive. The movement
of materials through soil and unconsolidated material has
been a topic of concern for many disciplines. Materials of
interest include nutrients (e.g., Davis et al. 2014), inorganic
colloids (e.g., Trostle et al. 2016), organic carbon (e.g.,
Stielstra et al. 2015), trace metals and metalloids (e.g., Ma
et al. 2011), and pollutants (e.g., Ma et al. 2014). The move-
ment of these materials through the critical zone controls
natural phenomena such as chemical weathering, erosion,
nutrient cycling, and anthropogenic issues, such as acid-
mine drainage, eutrophication of surface waters, atmospheric
CO2 concentrations, and contamination of drinking water

Critical Zone, Fig. 1 An illustration of the Critical zone conceptual
model modified fromChorover et al. (2007) (Artwork by R. Kindlimann)
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(Li et al. 2017). Studies of material movement range from
empirical studies and process-based models to quantify their
movement. Li et al. (2017) described four areas in
which reactive transport models may substantially
contribute to critical zone science as testable hypotheses:
(1) evapotranspiration-chemical weathering controlled by
reactive gases, (2) water availability-chemical weathering-
atmospheric CO2-temperature linkages at the global scale,
(3) soil moisture influences on carbon stabilization in soil,
and (4) plant root controls on soil formation and function.
Understanding the movement of energy in the critical zone is
important for investigating thermodynamic controls from cli-
mate on physical, biological, and chemical processes.
Rasmussen et al. (2011) proposed the structure and evolution
of the critical zone can be described using climatic and biotic
forcings as a single environmental energy and mass transfer
(EEMT) parameter with energy flux units (e.g., J m�2 s�1).
This concept has many potential applications and may be
applied across any chosen spatial and temporal scales. Further
coupling the movement of materials and energy are current
areas of study with many future implications for understand-
ing the critical zone.

Linking critical zone processes across time and spatial
scales is a principal goal of critical zone science. Many
chemical reactions occur at molecular microsystems
(mineral surfaces, root surfaces, macropores, rock fractures),
and critical zone scientists are working to measure their effect
on larger scale processes (soil formation, hillslopes develop-
ment, watersheds ecosystem services). For example, Brantley
et al. (2011) notes that as rocks and minerals weather, their
size decreases and surface area increases, exerting a control
on the rate of chemical weathering in the soil profile with
potential influences at the watershed scale in Puerto Rico and
Pennsylvania. Moreover, mechanisms occurring in a soil
profile or at an acre scale can be coupled with regional and
global scale estimates. In addition to size and spatial scales,
the other most arduous endeavors for Earth Scientists has
been linking short-term processes (hours, days, years) with
longer-term changes (decades, centuries, and millennia).
Monitoring efforts have been fundamental for quantifying
short- and long-term biogeochemical and physical processes
of the critical zone. For example, a short-term observation
may be daily monitoring for peak streamflow during melt
season in a snow-dominated watershed (Chen et al. 2016).
As a long-term example, Richter et al. (2000) observed that
the impact of atmospheric nitrogen was dominant in biolog-
ical nitrogen fixation over 40 years, by comparing soils col-
lected and archived from 1962 through 1997 at the Calhoun
Experimental Forest. Coupled numerical models, such as
Flux-Penn State Integrated Hydrologic Model (Flux-PIHM)
(Shi et al. 2013) and Terrestrial Integrated Modeling System
(TIMS) (Niu et al. 2014), are the leading edge on combining
processes over multiple time scales to evaluate the relative

influences of different critical zone parameters, and hold out
the capacity to support predictions of critical zone processes
in the past and future. Furthermore, coupled numerical
models are capable of using contemporary processes to inves-
tigate changes over geologic time scales (thousands to
millions of years).

Current Investigations

The critical zone is studied at a number of Critical Zone
Observatories (CZOs), where multiple scientific communities
work in tandem to understand coupled processes, through
both field and theoretical approaches. Teams of researchers
monitor surface and subsurface water, meteorological condi-
tions, soil properties, and vegetation. In addition, researchers
undertake sampling campaigns of vegetation, soils, sedi-
ments, regolith, and bedrock. Information generated through
monitoring and from sampling campaigns is synthesized to
investigate complex systems at CZOs.

While individual CZOs each develop novel approaches to
quantify critical zone processes, observatories aim to com-
plete comparable measurements as a network. A key aspect is
to use common measurements in which sampling is guided by
overarching hypotheses and further developed to reflect site
conditions, but materials and methods are implemented in a
similar manner across the CZO network (White et al. 2015).
Although cross-CZO data comparisons are a substantial goal,
many lines of inquiry are site-specific and utilize approaches
based on the principal of “best technique and sampling
design” at each individual CZO. Thus, even though CZOs
are individual entities, data is collected to be comparable with
local, regional, and global monitoring efforts. Cross-CZO
comparisons that are generalizable across space and time
may be modeled using common measurement data and are
paramount for creating integrated processes theories needed
to expand predictive modeling (i.e., Earth-casting) (White
et al. 2015; Richter and Billings 2015).

The United States National Science Foundation (NSF) has
funded 10 CZOs across the United States and nine of these
still receive funding (White et al. 2015). The NSF CZO
program began in 2007 with support of three CZOs:
Susquehanna-Shale Hills CZO in Pennsylvania, the Southern
Sierra CZO in California, and the Boulder Creek CZO in
Colorado. In 2009, three additional observatories were
added: Luquillo Mountains CZO in Puerto Rico, Christina
River Basin CZO in Delaware and Pennsylvania, and the
Jemez River Basin/Santa Catalina Mountains CZO in Ari-
zona and New Mexico. In 2013, four new observatories were
selected for funding: Eel River CZO in northern California;
Reynolds Creek CZO in Idaho; the Intensively Managed
Landscape CZO in Illinois, Iowa, and Minnesota, and the
Calhoun CZO in northern South Carolina. Measurements at
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the NSF-funded CZOs include a common set of variables that
quantify Critical zone architecture and evolution, fluxes
across the Critical zone boundaries, and changes in storage
of the major critical zone reservoirs. The CZOs have recog-
nized that many of the details of overarching science ques-
tions can best be addressed if a core set of variables is
measured across the CZOs, and if those core measurements
are made using the same or readily comparable methods. In
2014, the CZO National Office was created to spur network
level research and outreach activities.

There have been many international projects to conduct
critical zone research globally. Although some observatories
worldwide are not called CZOs, scientists across the interna-
tional research communities have adopted the framework and
nomenclature of “critical zone science,” because the para-
digm is compelling for addressing environmental sustainabil-
ity and accelerating interest in Earth surface sciences (White
et al. 2015; Richter and Billings 2015). International CZOs
and similar projects have identified objectives of determining
changes to the critical zone in response to human pressures,
and each program has its own approach and strategy. The
European Commission funded SoilTrEC in 2009. The
SoilTrEC network consisted of four CZOs: Koilaris River
Basin in Crete, Damma Glacier in Switzerland, Slavka Forest
in the Czech Republic, and in Fuchsenbigl, Austria. Germany
has also established the TERENO network, a set of four
observatories: Eifel/Lower Rhine Valley, Harz/Central Ger-
man Lowland, Northeastern German Lowland, and Bavarian
Alps/pre-Alps Observatories. Additional CZOs in France and
through a United Kingdom-China partnership are in develop-
ment. Through internationally funded meeting and work-
shops, there are 60 countries conducting research at
21 funded CZOs as of 2015 (White et al. 2015).

Conclusions

Critical zone science is a new paradigm focusing on integra-
tion of existing fields of natural sciences: a systems approach
needed to understand the three-dimensional complex linkages
involving physical, chemical, and biological processes at the
Earth’s surface. The term “critical” reflects that nearly all
terrestrial life depends on the critical zone. Critical zone
science aims to develop predictive abilities, which are essen-
tial to understand the past and future effects of climate and
land-use. The central scientific concepts investigated through
critical zone science are the formation of weathered bedrock,
water and soil resources, the movement of energy and reactive
material, and integration of natural processes across spatial
and time scales. The critical zone is studied at Critical Zone
Observatories (CZOs), where multiple scientific communities
monitor and conduct sampling campaigns to synthesize the
complex interactions systems. Critical zone research is

conducted globally as international research communities
have adopted the framework and nomenclature to renew
interest in Earth surface processes and their sustainability.
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